Mondragón Ochooa, J. S.; Altin, A.; Rechmann, J.; Erbe, A.: Delamination Kinetics of Thin Film Poly(acrylate) Model Coatings Prepared by Surface Initiated Atom Transfer Radical Polymerization on Iron. Journal of the Electrochemical Society 165 (16), pp. C991 - C998 (2018)
Mondragon Ochoa, J. S.; Altin, A.; Erbe, A.: Comparison of cathodic delamination of poly(n-alkyl methacrylates) on iron. Materials and Corrosion - Werkstoffe und Korrosion 68, pp. 1326 - 1332 (2017)
Mondragon Ochoa, J. S.; Altin, A.; Rohwerder, M.; Erbe, A.: Surface Modification of Iron With Grafted Hydrophobic Acrylic Polymers and Study of Their Delamination Kinetics. Polymers and Organic Chemistry POC16, Hersonissos (Crete), Greece (2016)
Mondragon Ochoa, J. S.: Preparation of Polyacrylic Thin Films on Iron by Controlled Radical Polymerization and their Delamination Behaviour. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.