Zhu, L.-F.; Körmann, F.; Chen, Q.; Selleby, M.; Neugebauer, J.; Grabowski, B.: Accelerating ab initio melting property calculations with machine learning: application to the high entropy alloy TaVCrW. npj Computational Materials 10 (1), 274 (2024)
Zhou, Y.; Srinivasan, P.; Körmann, F.; Grabowski, B.; Smith, R.; Goddard, P.; Duff, A. I.: Thermodynamics up to the melting point in a TaVCrW high entropy alloy: Systematic ab initio study aided by machine learning potentials. Physical Review B 105 (21), 214302 (2022)
Dsouza, R.; Huber, L.; Grabowski, B.; Neugebauer, J.: Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping. Physical Review B 105 (18), 184111 (2022)
Novikov, I.; Grabowski, B.; Körmann, F.; Shapeev, A.: Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Computational Materials 8 (1), 13 (2022)
Zhu, L.-F.; Körmann, F.; Ruban, A. V.; Neugebauer, J.; Grabowski, B.: Performance of the standard exchange-correlation functionals in predicting melting properties fully from first principles: Application to Al and magnetic Ni. Physical Review B 101 (14), 144108 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.