Stratmann, M.; Kim, K. T.; Streckel, H.: Neue experimentelle Verfahren zur Untersuchung der atmosphärischen Korrosion von mit dünnen Elektrolytfilmen belegten Metallen. Zeitschrift für Metallkunde 81, 10, pp. 715 - 725 (1990)
Stratmann, M.; Streckel, H.: On the Atmospheric Corrosion of Metals, which are covered with Thin Electrolyte Layers. Part 1: Verification of the Experimental Technique. Corrosion Science 30 (6-7), pp. 681 - 696 (1990)
Stratmann, M.; Streckel, H.: On the Atmospheric Corrosion of Metals, which are covered with Thin Electrolyte Layers. Part 2: Experimental Results. Corrosion Science 30 (6-7), pp. 697 - 714 (1990)
Stratmann, M.; Streckel, H.; Kim, K.-t.; Crockett, S.: On the atmospheric corrosion of metals, which are covered with thin electrolyte layers. Part 3: The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corrosion Science 30 (6-7), pp. 715 - 734 (1990)
Volmer, M.; Stratmann, M.; Viefhaus, H.: Electrochemical and Electron Spectroscopic Investigations of Iron Surfaces Modified with Thiols. Surface and Interface Analysis 16, 1-12, pp. 278 - 282 (1990)
Wolpers, M.; Viefhaus, H.; Stratmann, M.: SEM and SAM Imaging of Silane LB-Films on Metallic Substrates. Applied Surface Science 45, 2, pp. 167 - 170 (1990)
Stratmann, M.; Hoffmann, K.: In-Situ Mößbauer Spectroscopic Study of Reactions within Rust Layers. Corrosion Science 29 (11-12), pp. 1329 - 1352 (1989)
Stratmann, M.; Hoffmann, K.: In situ Möβbauer spectroscopic study of reactions within rust layers. Corrosion Science 29 (11-12), pp. 1329 - 1352 (1989)
Volmer, M.; Stratmann, M.; Viefhaus, H.: Interaction between S-organic compounds and iron surfaces. Fresenius’ Zeitschrift für Analytische Chemie 333 (4-5), p. 545 (1989)
Stratmann, M.; Streckel, H.: The Investigation of the Corrosion of Metal Surfaces, Covered with Thin Electrolyte Layers - A New Experimental Technique. Berichte Bunsengesellschaft Physikalische Chemie 92 (11), pp. 1244 - 1250 (1988)
Volmer, M.; Czodrowski, B.; Stratmann, M.: Electron Spectroscopic and Electrochemical Investigations of Chemically Modified Iron Surfaces. Berichte Bunsengesellschaft Physikalische Chemie 92 (11), pp. 1335 - 1341 (1988)
Stratmann, M.: The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-A new experimental technique. Corrosion Science 27 (8), pp. 869 - 872 (1987)
Stratmann, M.; Bohnenkamp, K.; Engell, H.-J.: Investigations Toward Understanding of the Atmospheric Corrosion Processes of Pure Iron. Materials and Corrosion - Werkstoffe und Korrosion 34 (12), pp. 604 - 612 (1983)
Stratmann, M.; Engell, H.-J.: An Electrochemical and Magnetic Study of Phase-Transitions in Rust-Layers during the Atmospheric Corrosion of Iron. Journal of the Electrochemical Society 130 (8), p. C313 (1983)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…