Barranco, V.; Thiemann, P.; Yasuda, H. K.; Stratmann, M.; Grundmeier, G.: Spectroscopic and electrochemical characterisation of thin cathodic plasma polymer films on iron. Applied Surface Science 229 (1-4), pp. 87 - 96 (2004)
Grundmeier, G.; Thiemann, P.; Carpentier, J.; Shirtcliffe, N.; Stratmann, M.: Tailoring of the morphology and chemical composition of thin organosilane microwave plasma polymer layers on metal substrates. Thin Solid Films 446 (1), pp. 61 - 71 (2004)
Shirtcliffe, N.; Thiemann, P.; Stratmann, M.; Grundmeier, G.: Chemical structure and morphology of thin, organo-silicon plasma-polymer films as a function of process parameters. Surface & Coatings Technology 142-144, pp. 1121 - 1128 (2001)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.