Merz, A.; Rohwerder, M.: The protection zone: A long-range corrosion protection mechanism around conducting polymer particles in composite coatings: Part II. PEDOT: PSS. Journal of the Electrochemical Society 166 (12), pp. C314 - C320 (2019)
Merz, A.; Uebel, M.; Rohwerder, M.: The Protection Zone: A Long-Range Corrosion Protection Mechanism around Conducting Polymer Particles in Composite Coatings: Part I. Polyaniline and Polypyrrole. Journal of the Electrochemical Society 166 (12), pp. C304 - C313 (2019)
Merz, A.; Rohwerder, M.: Corrosion protection by composite coatings containing conducting polymer particles: elucidation of the “protection zone”. 232nd ECS Fall Meeting 2017, National Harbour, USA (2017)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Conferences 2016, New London, NH, USA (2016)
Merz, A.; Uebel, M.; Rohwerder, M.: Investigation of the role of protection zone around conducting polymer in composite coatings in inhibiting delamination process. Gordon Research Seminars 2016, New London, NH, USA (2016)
Merz, A.: Investigation of the “Protection Zone”, a novel mechanism to inhibit delamination of composite organic coatings containing conducting polymer. Dissertation, Ruhr-Universität Bochum (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.