Tehranchi, A.; Zhou, X.; Curtin, W. A.: A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction. Acta Materialia 185, pp. 98 - 109 (2020)
Tehranchi, A.; Curtin, W. A.: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics 216, 106502 (2019)
Leyson, G.; Curtin, W. A.: Solute strengthening at high temperatures. Modelling and Simulation in Materials Science and Engineering 24 (6), 065005 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…