Haghighat, S. M. H.; Schäublin, R. E.: Obstacle strength of binary junction due to dislocation dipole formation: An in-situ transmission electron microscopy study. Journal of Nuclear Materials 465, pp. 648 - 652 (2015)
Haghighat, S. M. H.; Schäublin, R. E.; Raabe, D.: Atomistic simulation of the a0 <1 0 0> binary junction formation and its unzipping in body-centered cubic iron. Acta Materialia 64, pp. 24 - 32 (2014)
Schäublin, R. E.; Haghighat, S. M. H.: Molecular dynamics study of strengthening by nanometric void and Cr alloying in Fe. Journal of Nuclear Materials 442 (1-3 Suppl.1), pp. S643 - S648 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.