Tsybenko, H.; Xia, W.; Dehm, G.; Brinckmann, S.: On the commensuration of plastic plowing at the microscale. Nanobrücken 2020: Nanomechanical Testing Conference & Bruker User Meeting, Düsseldorf, Germany (2020)
Duarte, M. J.; Fang, X.; Brinckmann, S.; Dehm, G.: Hydrogen-microstructure interactions in bcc FeCr alloys by in-situ nanoindentation. ECI, Nanomechanical Testing in Materials Research and Development VI, Dubrovnik, Croatia (2017)
Fink, C.; Brinckmann, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Brinckmann, S.: Dislocation emission from short penny-shaped cracks: A multiscale model of atomistic & dislocation dynamics. Nanomechanical Testing in Materials Research and Development IV, Olhão (Algarve), Portugal (2013)
Patil, P.: Influence of plastic anisotropy on the deformation behaviour of Austenitic stainless-steel during single micro-asperity wear. Dissertation, Ruhr-Uiversität-Bochum (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…