Barba, D.; Egan, A.; Utada, S.; Gong, Y.; Tang, Y. T.; Mazanova, V.; Mills, M. J.; Reed, R. C.: Deformation Mechanisms Rationalisation to Design for Creep Resistance in Polycrystalline Ni-Based Superalloys. Metallurgical and Materials Transactions A 54, pp. 1886 - 1901 (2023)
Li, Z.; Ram, F.; Zaefferer, S.; Raabe, D.; Reed, R. C.: Investigations of dislocation structures in a Ni-based single crystal superalloy using Electron Channeling Contrast Imaging (ECCI) and cross-correlation EBSD. RMS EBSD, Glasgow, Scotland, UK (2015)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Mesoscale modeling of dislocation climb and primary creep process in single crystal Ni base superalloys. International Workshop on Dislocation Dynamics Simulations, Saclay, France (2014)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Characterization and modeling of the propagation of creep dislocations from the interdendritic boundaries in single crystal Ni base superalloys. International Workshop on Modelling and Simulation of Superalloys, Bochum, Germany (2014)
Haghighat, S. M. H.; Reed, R. C.; Raabe, D.: Modeling of dislocation mechanisms and the influence of the γ/γ´lattice misfit on the dislocation assisted creep of high temperature Ni-base superalloys. 7th International Conference on Multiscale Materials Modeling , Berkeley, CA, USA (2014)
Zaefferer, S.; Zhu, Z.; Reed, R. C.: Observation of Dislocation Evolution during Straining of a γ-γ’ Superalloy Single Crystal using the CECCI technique. Eurosuperalloys 2014, Giens, France (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.