Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Khan, T. R.; Erbe, A.; Auinger, M.; Marlow, F.; Rohwerder, M.: Electrodeposition of zinc-silica composite coatings: Challenges in incorporating functionalized silica particles into a zinc matrix. Science and Technology of Advanced Materials 12 (5), 055005 (2011)
Khan, T. R.; de la Fuenta, D.; Rohwerder, M.: Electrolytic co-deposition of SiO2 nanoparticles with zinc for improvement of corrosion protection. 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Khan, T. R.; Vimalanandan, A.; Rohwerder, M.; Marlow, F.: Electrodeposition of Zinc-Silica Coatings for Smart Corrosion Protection. EUROCORR 2011, the European Corrosion Congress “Developing Solutions For The Global Challenge”, Stockholm, Sweden (2011)
Khan, T. R.: Nanocomposite coating: Codeposition of SiO2 particles during electrogalvanizing. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.