Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Cathodoluminescence and the structural study of Lanthanide-doped oxides. Workshop on Transmission Electron Microscopy (E-MAT), Antwerp, Belgium (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Study of the chemical composition and the luminescent spectra of Lanthanide-doped oxides. E-MRS 2019 Spring Meeting, Nice, France (2019)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: NiOx cocatalysts on nanosheets for photocatalytic water splitting. nanoGe Fall Meeting 2018, Torremolinos, Spain (2018)
Zhang, S.; Scheu, C.: Supervision on multi-dimensional data from electron microscopy. BiGmaxWorkshop 2018 on Big-Data-DrivenMaterials Science, Irsee, Germany (2018)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Zhang, S.; Ludwig, A.; Scheu, C.: Observation of the Structural Transformation of Multinary Nanoparticles by In-situ Transmission Electron Microscopy. EMAT Workshop on Transmission Electron Microscopy, University of Antwerp, Antwerp, Belgium (2017)
Zhang, S.; Mio, A.; Cagnoni, M.; Zhu, M.; Cojocaru-Mirédin, O.; Wuttig, M.; Scheu, C.: Valence EELS investigation on GeSexTe1-x phase change material. EDGE 2017: Enhanced Data Generated by Electrons, 8th International Workshop on Electron Energy Loss Spectroscopy and Related Techniques, Okuma, Okinawa, Japan (2017)
Bueno Villoro, R.: Microstructure, thermal stability and defect phonon scattering in AgSbTe2 thermoelectrics. Master, Universitat Autònoma de Barcelona, Spain (2019)
Bueno Villoro, R.: Effect of the processing route on the microstructure of Ag18Sb29Te53 (AST) based thermoelectrics. Bachelor, Universitat Autònoma de Barcelona, Spain (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.