Jägle, E. A.: Metallische Werkstoffe in der Additiven Fertigung. Workshop "Steels for Additive Manufacturing", Stahlinstitut,VDEh, Düsseldorf, Düsseldorf, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Seminar Materials Science and Technology, Ruhr-Universität Bochum, Bochum, Germany (2017)
Jägle, E. A.: Phase transformation phenomena in additively produced alloys. Werkstoffkolloquium 2016, Deutsches Zentrum für Luft- und Raumfahrt Köln, Köln, Germany (2016)
Jägle, E. A.: Phase transformations in alloys produced by Laser Additive Manufacturing. Spezialseminar Fakultät für Werkstoffwissenschaft und Werkstofftechnologie, TU Bergakademie Freiberg, Freiberg, Germany (2016)
Jägle, E. A.: Solidification cracking during Selective Laser Melting of Inconel 738LC: origins and remedy. Multiscale Materials Modelling conference, Dijon, France (2016)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Precipitation Reaction in a Maraging Steel during Laser Additive Manufacturing triggered by Intrinsic Heat Treatment. Materials Science and Engineering Congress, Darmstadt, Germany (2016)
Jägle, E. A.: Small variations in powder composition lead to strong differences in part properties. Alloys for Additive Manufacturing Workshop 2016, Düsseldorf, Germany (2016)
Jägle, E. A.: Alloys for Laser Additive Manufacturing: general considerations and precipitation reactions. Seminar at Institut für Werkstoff-Forschung, DLR Köln 2016, Köln, Germany (2016)
Jägle, E. A.: Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing. Seminar at EMPA (Eidgenössische Materialprüfungs- und Forschungsanstalt), Dübendorf, Switzerland (2016)
Jägle, E. A.: Alloys for and by Laser Additive Manufacturing – the basic research perspective. 2nd European Scientific Steel Panel – Metal Additive Manufacturing, Steel Institute VdEH, Düsseldorf, Germany (2015)
Jägle, E. A.: Maraging steel produced by LAM: Influence of processing on precipitation and austenite reversion. Phase Transformations in Inorganic Materials (PTM), Whistler, BC, Canada (2015)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.