Zaefferer, S.; Romano, P.: Attempt to identify and quantify microstructural constituents in low-alloyed TRIP steels by simultaneous EBSD and EDS measurements. M&M 2007, Microscopy and Microanalysis 2007 Meeting, Ft. Lauderdale, FL, USA (2007)
Frommert, M.; Dorner, D.; Lahn, L.; Raabe, D.; Zaefferer, S.: 3D Investigation of Early Stages of Recrystallization in Deformed Goss-Oriented Fe3%Si Single Crystals. The Third International Conference on Recrystallization and Grain Growth ReX & GG III, Jeju Island, South Korea (2007)
Zaefferer, S.: Some ideas on the formation mechanisms and intensity of electron backscatter diffraction patterns. 14th Conference on Electron Backscatter Diffraction, New Lanark, Scotland, UK (2007)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3 Dimensional EBSD study of the relationship between triple junctions and columnar grain in electrodeposited materials. Electron Back Scatter Diffraction Meeting 2007, New Lanark, Scotland, UK (2007)
Bastos da Silva, A. F.; Zaefferer, S.; Raabe, D.: Three Dimension Characterization of Electrodeposited Samples. MRS Fall Meeting, Boston, MA, USA (2005)
Dorner, D.; Zaefferer, S.: 3D reconstruction of an abnormally growing Goss grain in Fe3%Si by FIB serial sectioning and EBSD. DPG-Jahrestagung 2005, Berlin, Germany (2005)
Zaafarani, N.; Singh, R.; Zaefferer, S.; Roters, F.; Raabe, D.: 3D experimental investigation and crystal plasticity FEM simulation of the texture and microstructure below a nanoindent in a Cu-single crystal. 6th European Symposium on nano-mechanical Testing (Nanomech 6), Hückelhoven, Germany (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Deformation Behavior of a Fe3Al Alloy During Thermomechanical Treatment. MRS Fall Meeting, Boston, MA, USA (2004)
Thomas, I.; Zaefferer, S.; Friedel, F.; Raabe, D.: Orientation dependent growth behaviour of subgrain structures in IF steel. 2nd International Joint Conference on Recrystallization and Grain Growth, Annecy, France (2004)
Konrad, J.; Raabe, D.; Zaefferer, S.: Nucleation Mechanisms of Recrystallization in Warm Rolled Fe3Al Base Alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE, Düsseldorf, Germany (2004)
Wöllmer, S.; Zaefferer, S.; Göken, M.; Mack, T.; Glatzel, U.: Characterization of phases of aluminized nickel base superalloys. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Zaefferer, S.; Motaman, S. A. H.: Metallic Materials (Microstructure, Microscopy, Modelling). Lecture: SS 2021, RWTH Aachen University, April 12, 2021 - July 23, 2021
Zaefferer, S.: Fundamentals and practical aspects of texture and microstructure measurements using EBSD-based orientation microscopy and related techniques. Lecture: January 2020, IIT Madras, India, 2020-01
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…