Zhu, L.-F.; Körmann, F.; Chen, Q.; Selleby, M.; Neugebauer, J.; Grabowski, B.: Accelerating ab initio melting property calculations with machine learning: application to the high entropy alloy TaVCrW. npj Computational Materials 10 (1), 274 (2024)
Schneider, M.; Couzinie, J.-P.; Shalabi, A.; Ibrahimkhel, F.; Ferrari, A.; Koermann, F.; Laplanche, G.: Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys. Scripta Materialia 240, 115844 (2024)
Zhou, Y.; Srinivasan, P.; Körmann, F.; Grabowski, B.; Smith, R.; Goddard, P.; Duff, A. I.: Thermodynamics up to the melting point in a TaVCrW high entropy alloy: Systematic ab initio study aided by machine learning potentials. Physical Review B 105 (21), 214302 (2022)
Chung, H.; Kim, D. W.; Cho, W. J.; Han, H. N.; Ikeda, Y.; Ishibashi, S.; Körmann, F.; Sohn, S. S.: Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-xCrxCoNi alloys. Journal of Materials Science & Technology 108, pp. 270 - 280 (2022)
Novikov, I.; Grabowski, B.; Körmann, F.; Shapeev, A.: Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Computational Materials 8 (1), 13 (2022)
Yang, D.-C.; Jo, Y.-H.; Ikeda, Y.; Körmann, F.; Sohn, S. S.: Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy. Journal of Materials Science & Technology 90, pp. 159 - 167 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…