Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Correction: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLOS ONE 19 (6), e0306374 (2024)
Dubosq, R.; Camacho, A.; Rogowitz, A.; Zhang, S.; Gault, B.: Influence of high-strain deformation on major element mobility in garnet: Nanoscale evidence from atom probe tomography. Journal of Metamorphic Geology 42 (3), pp. 355 - 372 (2024)
Dubosq, R.; Schneider, D.; Alfredo, C.; Gault, B.: Strain hardening induced by crystal plasticity: A new mechanism for brittle failure in garnets. Earth and Planetary Science Letters 617, 118273 (2023)
Dubosq, R.; Woods, E.; Gault, B.; Best, J. P.: Electron microscope loading and in situ nanoindentation of water ice at cryogenic temperatures. PLoS One 18 (2), e0281703 (2023)
Dubosq, R.; Schneider, D.; Zhou, X.; Gault, B.; Langelier, B.; Pleše, P.: Bubbles and atom clusters in rock melts: A chicken and egg problem. Journal of Volcanology and Geothermal Research 428, 107574 (2022)
Dubosq, R.; Rogowitz, A.; Schweinar, K.; Gault, B.; Schneider, D.: A 2D and 3D nanostructural study of naturally deformed pyrite: assessing the links between trace element mobility and defect structures. Contributions to Mineralogy and Petrology 174, 72 (2019)
Rogowitz, A.; Zaefferer, S.; Dubosq, R.: Direct observation of dislocation nucleation in pyrite using combined electron channelling contrast imaging and electron backscatter diffraction. Terra Nova 30 (6), pp. 423 - 430 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.