Lyrio, M. S.; Oliveira, H.R.; Sandim, M. J. R.; Devulapalli, V.; Sandim, H. R. Z.: Effect of the scanning strategy on texture of grain-oriented electrical steel (Fe-4wt%Si) processed via laser powder-bed fusion and subsequent thermomechanical processing. Materials Characterization 221, 114789 (2025)
Lyrio, M. S.; Shoji Aota, L.; Sandim, M. J. R.; Sandim, H. R. Z.: Additive manufacturing of Fe-3.5 wt.-%Si electrical steel via laser powder bed fusion and subsequent thermomechanical processing. Journal of Materials Science 59 (9), pp. 4019 - 4038 (2024)
Souza Filho, I. R.; Sandim, M. J. R.; Ponge, D.; Sandim, H. R. Z.; Raabe, D.: Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 754, pp. 636 - 649 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.