Schneider, A.; Zhang, J.: Orientation relationship between a ferritic matrix and k-phase (Fe3AlCx) precipitates formed during metal dusting of Fe–15Al. Intermetallics 13 (12), pp. 1332 - 1336 (2005)
Zhang, J.; Schneider, A.; Inden, G.: Cementite decomposition and coke gasification in He and H2–He gas mixtures. Corrosion Science 46 (3), pp. 667 - 679 (2004)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Deges, J.; Fischer, R.; Frommeyer, G.; Schneider, A.: Atom probe field ion microscopy investigations on the intermetallic Ni49.5Al49.5Re1 alloy. Surface and Interface Analysis 36, pp. 533 - 539 (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.: Investigation of nucleation mechanisms of recrystallization in warm rolled Fe3Al base alloys. Materials Science Forum 467-470, pp. 75 - 80 (2004)
Schneider, A.; Sauthoff, G.: Iron-Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications. Steel Research International 75, 1, pp. 55 - 61 (2004)
Schneider, A.; Zhang, J.: Metal dusting of ferritic Fe–Al–M–C (M=Ti, V, Nb, Ta) alloys in CO–H2–H2O gas mixtures at 650 °C. Materials and Corrosion 54 (10), pp. 778 - 784 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Effect of Gas Composition on Cementite Decomposition and Coke Formation of Iron. Corrosion Science 45 (2), pp. 281 - 299 (2003)
Fischer, R.; Frommeyer, G.; Schneider, A.: APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure. Materials Science and Engineering A 353, pp. 87 - 91 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Characterisation of the coke formed during metal dusting of iron CO-H2-H2O gas mixtures. Corrosion Science 45, pp. 1329 - 1341 (2003)
Zhang, J.; Schneider, A.; Inden, G.: Coke formation during metal dusting of iron in CO–H2–H2O gas with high CO content. Materials Science and Corrosion 54, pp. 770 - 777 (2003)
Zhang, J.; Schneider, A.; Inden, G.: α-Fe layer formation during metal dusting of iron in CO-H2-H2O gas mixtures. Materials and Corrosion 54, pp. 763 - 769 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…