He, J.; Scholz, F.; Horst, O. M.; Thome, P.; Frenzel, J.; Eggeler, G. F.; Gault, B.: Corrigendum to ‘On the Re segregation at the low angle grain boundary in a single crystal Ni-base superalloy’ Scripta Materialia Volume 185, August 2020, Pages 88-93 (Scripta Materialia (2020) 185 (88–93), (S1359646220302475), (10.1016/j.scriptamat.2020.03.063)). Scripta Materialia 187, p. 309 (2020)
Edmondson, P. D.; Gault, B.; Gilbert, M. R.: An atom probe tomography and inventory calculation examination of second phase precipitates in neutron irradiated single crystal tungsten. Nuclear Fusion 60 (12), 126013 (2020)
Antonov, S.; Li, B.; Gault, B.; Tan, Q.: The effect of solute segregation to deformation twin boundaries on the electrical resistivity of a single-phase superalloy. Scripta Materialia 186, pp. 208 - 212 (2020)
Blum, T.; Valley, J.; Gault, B.; Stephenson, L.: Application of SIMS and APT to Understand Scale Dependent U-Pb Isotope Behavior in Zircon. Microscopy and Microanalysis 26 (S2), pp. 2994 - 2995 (2020)
Harding, I.; Mouton, I.; Gault, B.; Kumar, K. S.: Microstructural Evolution in an Fe–10Ni–0.1C Steel During Heat Treatment and High Strain-Rate Deformation. Metallurgical and Materials Transactions A 51, pp. 5056 - 5076 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…