Stein, F.; Sauthoff, G.; Palm, M.: Experimental Determination of the Ternary Fe–Al–Zr Phase Diagram. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Düsseldorf, Germany (2004)
Palm, M.; Sauthoff, G.: Manufacturing and Testing of a Novel Advanced NiAl-Base Alloy for Gas Turbine Applications. Materials for Advanced Power Engineering 2002 (Proc. 7th Liège Conference), Liege (2002)
Ducher, R.; Lacaze, J. C.; Stein, F.; Palm, M.: Experimental Study of the Liquidus Surface of the Al–Fe–Ti System. Thermodynamics of Alloys - TOFA 2002, Univerità degli Studi di Roma “La Sapienza”, Rome, Italy (2002)
Ducher, R.; Stein, F.; Palm, M.; Lacaze, J. C.: Nouvelle évaluation de la surface de liquidus du système ternaire Ti–Al–Fe. CPR “Intermetalliques base titane”, Seminar “Alliages TiAl”, Aspet, Haute-Garonne, France (2002)
Stein, F.; Palm, M.; Sauthoff, G.: New results on intermetallic phases, phase equilibria, and phase transformation temperatures in the Fe–Zr system. Materials Week 2000, München, Germany (2000)
Eumann, M.; Palm, M.; Sauthoff, G.: Constitution, Microstructure and Mechanical Properties of Ternary Fe–Al–Mo Alloys. EUROMAT 99, Munich, Germany (1999)
Palm, M.; Stein, F.: Phase Equilibria in the Al-rich part of the Al–Ti system. 2nd International Symposium on Gamma Titanium Aluminides, TMS Annual Meeting, San Diego, CA, USA (1999)
Palm, M.; Gorzel, A. H.; Letzig, D.; Sauthoff, G.: Structure and Mechanical Properties of Ti–Al–Fe Alloys at Ambient and High Temperatures. Structural Intermetallics 1997, Seven Springs, PA, USA (1997)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. Journées d´Automne 1996, Paris, France (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimentelle Untersuchungen der Hochtemperaturgleichgewichte im System Ti–Al. DGM Hauptversammlung 1993, Friedrichshafen, Germany (1993)
Palm, M.: Phase Equilibria and Phase Diagrams. Lecture: 4th MSIT Winter School on Materials Chemistry, Castle Ringberg, Tegernsee, February 16, 2020 - February 20, 2020
Palm, M.: Phase diagrams and phase transformations. Lecture: Education Seminar 5th International Workshop on Titanium Aluminides, Tokyo, Japan, August 28, 2016
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.