Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Effect of the atomic structure of complexions on the active disconnection mode during shear-coupled grain boundary motion. Physical Review Materials 8 (6), 063602 (2024)
Chauniyal, A.; Dehm, G.; Janisch, R.: On the role of pre-existing defects in influencing hardness in nanoscale indentations — Insights from atomistic simulations. Journal of the Mechanics and Physics of Solids 154, 104511 (2021)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Deformation mechanism of complexions in a Cu grain boundary under shear. FEMS EUROMAT 2023, Frankfurt am Main, Germany (2023)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Disconnection activation in complexions of a Cu grain boundary under shear. 19th International Conference on Diffusion in Solids and Liquids (DSL-2023), Heraklion, Greece (2023)
Pemma, S.; Brink, T.; Janisch, R.; Dehm, G.: Stress driven grain boundary migration for different complexions of a Cu tilt grain boundary. Materials Science and Engineering Congress 2022, Darmstadt, Germany (2022)
Pemma, S.; Janisch, R.; Dehm, G.; Brink, T.: Atomistic simulation study of grain boundary migration for different complexions in copper. DPG-Tagung, Virtual (2021)
Arigela, V. G.; Kirchlechner, C.; Janisch, R.; Hartmaier, A.; Dehm, G.: Setup of a microscale fracture apparatus to study the interface behaviour in materials at high temperatures. Materials Day 2016, Ruhr Universitat Bochum, Bochum, Germany (2016)
Wang, Z.: Investigation of crystallographic character and molten-salt-corrosion properties of grain boundaries in a stainless steel using EBSD and ab-initio calculations. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.