Dick, A.; Körmann, F.; Hickel, T.; Neugebauer, J.: Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic and electronic excitations. Physical Review B 84 (12), 125101 (2011)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Role of spin quantization in determining the thermodynamic properties of magnetic transition metals. Physical Review B 83 (16), 165114 (2011)
Abbasi, A.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Materialia 59, pp. 3041 - 3048 (2011)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Rescaled Monte Carlo approach for magnetic systems: Ab initio thermodynamics of bcc iron. Physical Review B 81 (13), pp. 134425 - 134434 (2010)
von Pezold, J.; Dick, A.; Friák, M.; Neugebauer, J.: Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al–Ti. Physical Review B 81 (9), pp. 094203-1 - 094203-7 (2010)
Dick, A.; Hickel, T.; Neugebauer, J.: The Effect of Disorder on the Concentration-Dependence of Stacking Fault Energies in Fe1-xMnx – A First Principles Study. Steel Research International 80 (9), pp. 603 - 608 (2009)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Pressure dependence of the Curie temperature in bcc iron studied by ab initio simulations. Physical Review B 79, 184406, pp. 184406-1 - 184406-5 (2009)
Körmann, F.; Dick, A.; Grabowski, B.; Hallstedt, B.; Hickel, T.; Neugebauer, J.: Free energy of bcc iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. Physical Review B 78, 033102 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…