Oh, D. M.; Wippermann, S. M.; Schmidt, W. G.; Yeom, H. W.: Oxygen adsorbates on the Si(111)4x1-In metallic atomic wire: Scanning tunneling microscopy and density-functional theory calculations. Physical Review B 90 (15), 155432 (2014)
Wippermann, S. M.; Schmidt, W. G.: Entropy Explains Metal-Insulator Transition of the Si(111)-In Nanowire Array. Physical Review Letters 105 (12), 126102 (2010)
Wippermann, S. M.; Schmidt, W. G.: Water adsorption on clean Ni(111) and p(2x2)-Ni(111)-O surfaces calculated from first principles. Physical Review B 78 (23), 235439 (2008)
Wippermann, S. M.; Koch, N.; Schmidt, W. G.: Adatom-induced conductance modification of in nanowires: Potential-well scattering and structural effects. Physical Review Letters 100 (10), 106802 (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…