Wahn, M.; Neugebauer, J.: Generalized Wannier functions: An efficient way to construct ab-initio tight-binding parameters for group-III nitrides. Physica Status Solidi B: Basic Research 243, 7, pp. 1583 - 1587 (2006)
Marquardt, O.; Wahn, M.; Lymperakis, L.; Hickel, T.; Neugebauer, J.: Implementation and application of a multi-scale approach to electronic properties of group III-nitride based semiconductor nanostructures. Workshop on Nitride Based Nanostructures, Berlin, Germany (2007)
Neugebauer, J.; Wahn, M.: Exact exchange within Kohn-Sham formalism. Standard and variational approach. 1. Harzer Ab initio Workshop, Clausthal-Zellerfeld (2006)
Wahn, M.; Neugebauer, J.: The Bandgaps of GaN and InN in Zinc-blende and Wurtzite Phase: DFT Calculations Using the Exact Exchange (EXX) Functional. Workshop Forschergruppe Bremen, Bad Bederkesa, Germany (2005)
Wahn, M.; Neugebauer, J.: Generalized Wannier functions: An accurate and efficient way to construct ab-initio tight-binding orbitals. DPG-Tagung, Berlin, Germany (2005)
Wahn, M.; Neugebauer, J.: Generalized Wannier Functions: An efficient way to construct ab-initio tight-binding orbitals for group-III nitrides. 6th International Conference on Nitride Semiconductors, Bremen, Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.