Beese-Vasbender, P. F.; Nayak, S.; Erbe, A.; Stratmann, M.; Mayrhofer, K. J. J.: Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta 167, pp. 321 - 329 (2015)
Ettl, C.; Stratmann, M.: Editorial: Chemistry and the Max Planck Society: A Stable Bond Resonating into the Future. Angewandte Chemie International Edition 54 (20), pp. 5798 - 5799 (2015)
Ettl, C.; Stratmann, M.: Editorial: Die Chemie in der Max‐Planck‐Gesellschaft – Vergangenheit und Zukunft einer erfolgreichen Verbindung. Angewandte Chemie 127 (20), pp. 5892 - 5893 (2015)
Iqbal, D.; Sarfraz, A.; Stratmann, M.; Erbe, A.: Solvent-starved conditions in confinement cause chemical oscillations excited by passage of a cathodic delamination front. Chemical Communications 51 (89), pp. 16041 - 16044 (2015)
Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A.: In situ infrared spectroscopic investigation of intermediates in the electrochemical oxygen reduction on n-Ge(100) in alkaline perchlorate and chloride electrolyte. Electrochimica Acta 106, pp. 472 - 482 (2013)
Nayak, S.; Biedermann, P. U.; Stratmann, M.; Erbe, A.: A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT. Physical Chemistry Chemical Physics 15 (16), pp. 5771 - 5781 (2013)
Posner, R.; Jubb, A. M.; Frankel, G. S.; Stratmann, M.; Allen, H. C.: Simultaneous in-situ Kelvin Probe and Raman spectroscopy analysis of electrode potentials and molecular structures at polymer covered salt layers on steel. Electrochimica Acta 83, pp. 327 - 334 (2012)
Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H. T.; Meyer, V.; Mayrhofer, K. J. J.; Hassel, A. W.; Stratmann, M.; Widdel, F.: Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology 14 (7), pp. 1772 - 1787 (2012)
Senöz, C.; Borodin, S.; Stratmann, M.; Rohwerder, M.: In-situ detection of differences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy. Corrosion Science 58, pp. 307 - 314 (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This project deals with the phase quantification by nanoindentation and electron back scattered diffraction (EBSD), as well as a detailed analysis of the micromechanical compression behaviour, to understand deformation processes within an industrial produced complex bainitic microstructure.
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.