Wang, X.; Grundmeier, G.: Thin multifunctional silver/fluorocarbon plasma polymer nanocomposite films on metals. The 9th International Conference on Nanostructured Materials, Rio de Janeiro, Brazil (2008)
Wang, X.; Grundmeier, G.: Combined spectroscopic, microscopic and electrochemical analysis of release properties of Ag-nanoparticles embedded in fluorocarbon plasma polymer films. The 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Wang, X.; Grundmeier, G.: Understanding of the Barrier and Release Properties of Thin Model Ag/HDFD-Plasma Polymer Nanocomposite Films. International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA, USA (2007)
Grundmeier, G.; Wang, X.; Barranco, V.; Ebbinghaus, P.: Structure and barrier properties of thin plasma polymers and metal/plasma polymer nanocomposite film. ACHEMA, Frankfurt a. M., Germany (2006)
Wang, X.; Grundmeier, G.: Investigation of Structure and Stability of Silver Nanoparticles in Fluorocarbon Plasma Polymer Films. 13. Bundesdeutsche Fachtagung für Plasmatechnologie, Bochum, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…