Jang, K.; Kim, M.-Y.; Jung, C.; Kim, S.-H.; Choi, D.; Park, S.-C.; Scheu, C.; Choi, P.-P.: Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography. Microscopy and Microanalysis 30 (6), pp. 1047 - 1056 (2024)
Yoo, B.; Jung, C.; Jang, K.; Jun, H.; Choi, P.-P.: Novel Ni-Co-based superalloys with high thermal stability and specific yield stress discovered by directed energy deposition. Materials and Design 238, 112607 (2024)
Park, H.; Jung, C.; Yi, S.; Choi, P.-P.: Elucidating the ball-milling-induced crystallization mechanism of amorphous NbCo1.1Sn via atomic-scale compositional analysis. Journal of Alloys and Compounds 968, 172014 (2023)
Jung, C.; Jeon, S.-j.; Lee, S.; Park, H.; Han, S.; Oh, J.; Yi, S.-H.; Choi, P.-P.: Reduced lattice thermal conductivity through tailoring of the crystallization behavior of NbCoSn by V addition. Journal of Alloys and Compounds 962, 171191 (2023)
Jung, C.; Zhang, S.; Cheng, N.; Scheu, C.; Yi, S.-H.; Choi, P.-P.: Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo1.1Sn. ACS Applied Materials and Interfaces 15 (39), pp. 46064 - 46073 (2023)
Kim, H.; Bobel, A.; Jung, C.; Olson, G. B.; Euh, K.: Strengthening model development and effects of low diffusing solutes to coarsening resistance in aluminum alloys. Materials Today Communications 36, 106636 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.