Nayyeri, G.; Poole, W. J.; Sinclair, C. W.; Zaefferer, S.: Measurement of the critical resolved shear stress for basal slip in magnesium alloys using instrumented indentation. Scripta Materialia 156, pp. 37 - 41 (2018)
Nayyeri, G.; Poole, W. J.; Sinclair, C. W.; Zaefferer, S.: The role of indenter radius on spherical indentation of high purity magnesium loaded nearly parallel to the c-axis. Scripta Materialia 137, pp. 119 - 122 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…