Marquardt, O.; Hickel, T.; Neugebauer, J.; Gambaryan, K. M.; Aroutiounian, V. M.: Growth process, characterization, and modeling of electronic properties of coupled InAsSbP nanostructures. Journal of Applied Physics 110 (4), pp. 043708-1 - 043708-6 (2011)
Young, T. D.; Marquardt, O.: Influence of strain and polarization on electronic properties of a GaN/AlN quantum dot. Physica Status Solidi C C6 (S2), pp. S557 - S560 (2009)
Marquardt, O.; Gambaryan, K. M.; Aroutiounian, V. M.; Hickel, T.; Neugebauer, J.: Growth process, characterization and optoelectronic properties of InAsSbP dot-pit cooperative nanostructures. VCIAN 2010, Santorini, Greece (2010)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Polarization-induced charge carrier separation in realistic polar and nonpolar GaN quantum dots. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Polarization-induced charge carrier separation in realistic polar and nonpolar grown GaN quantum dots. Collaborative Conference on Interacting Nanostructures CCIN'09, San Diego, CA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Application of an eight-band k.p model to study III-nitride semiconductor. DPG Spring Meeting 2009, Dresden, Germany (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Investigation of group III-nitride semiconductor nanostructures using an eight-band k.p formalism. APS March meeting, Pittsburgh, PA, USA (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Modeling of electronic and optical properties of GaN/AlN quantum dots by using the k.p-method. Bremen DFG Forschergruppe: Workshop in Riezlern, Riezlern, Austria (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Effect of strain and polarization on the electronic properties of 2-, 1- and 0-dimensional semiconductor nanostructures. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…