Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Khan, T. R.; Erbe, A.; Auinger, M.; Marlow, F.; Rohwerder, M.: Electrodeposition of zinc-silica composite coatings: Challenges in incorporating functionalized silica particles into a zinc matrix. Science and Technology of Advanced Materials 12 (5), 055005 (2011)
Khan, T. R.; de la Fuenta, D.; Rohwerder, M.: Electrolytic co-deposition of SiO2 nanoparticles with zinc for improvement of corrosion protection. 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Khan, T. R.; Vimalanandan, A.; Rohwerder, M.; Marlow, F.: Electrodeposition of Zinc-Silica Coatings for Smart Corrosion Protection. EUROCORR 2011, the European Corrosion Congress “Developing Solutions For The Global Challenge”, Stockholm, Sweden (2011)
Khan, T. R.: Nanocomposite coating: Codeposition of SiO2 particles during electrogalvanizing. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.