von Pezold, J.; Neugebauer, J.: Hydrogen enhanced local plasticity - An atomistic study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Neugebauer, J.: Ab initio design of engineering materials: Status and challenges. UCSB-MPG Workshop on Inorganic Materials for Energy Conversion, Storage and Conservation, UCLA Lake Arrowhead Conference Center, CA, USA (2008)
Neugebauer, J.: Ab initio based modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. UCSB Seminar, University of California, Santa Barbara, USA (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles Determination of Phase Transitions in Magnetic Shape Memory Alloys. Group Seminar in Materials Department, University of California (UCSB), Santa Barbara, CA, USA (2008)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. Deutsche Physikalische Gesellschaft Meeting, Berlin, Germany (2008)
Neugebauer, J.: Ab initio basiertes Computergestütztes Materialdesign: Von der chemischen Bindung zu realen Werkstoffeigenschaften. Seminar at the TU Clausthal, TU Clausthal, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Optical properties of semiconductor nanostructures, a PW-approach to real-space properties. MRL seminar at UCSB, UCSB, Santa Barbara, USA (2008)
Grabowski, B.; Hickel, T.; Neugebauer, J.: From ab initio to materials properties: Accuracy and error bars of DFT thermodynamics. Phonon Workshop, Krakau, Poland (2007)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Determination of symmetry reduced structures by a soft-phonon analysis in magnetic shape memory alloys. 2nd Workshop on ab initio phonon calculations, Cracow, Poland (2007)
Neugebauer, J.: Ab initio thermodynamic and kinetics based on material design: Present status and perspectives. Seminar at the University of Oxford, Dept. of Materials, Oxford, UK (2007)
Friák, M.; Sander, B.; Ma, D.; Raabe, D.; Neugebauer, J.: Phase stability and mechanical properties of alloys. International Max-Planck Workshop on Multiscale Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Neugebauer, J.: Ab initio thermodynamics. International Max-Planck Workshop Multiscale Materials Modeling of Condensed Matter, Sant Feliu de Guixols, Spain (2007)
Friák, M.; Neugebauer, J.: First principles study of the anomalous volume-composition effect in Fe-Al and Fe-Ga alloys. 4th Discussion Meeting on the Development of Innovative Iron Aluminum Alloys, Interlaken, Switzerland (2007)
Abu-Farsakh, H.; Neugebauer, J.: Ab-initio study of the thermodynamics and kinetics of N at GaAs(001) surface. PAW workshop 2007, Goslar, Germany (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…