Auinger, M.; Vogel, D.; Vogel, A.; Spiegel, M.; Rohwerder, M.: A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures. Review of Scientific Instruments 84, 085108 (2013)
Swaminathan, S.; Rohwerder, M.; Rohwerder, M.; Spiegel, M.: Temperature and dew point dependent segregation of phosphorus and sulfur in Fe–Mn–P–S model alloy. Surface and Coatings Technology 205 (16), pp. 4089 - 4093 (2011)
Asteman, H.; Spiegel, M.: A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700 °C - Oxide solid solutions acting as a template for nucleation. Corrosion Science 50 (6), pp. 1734 - 1743 (2008)
Swaminathan, S.; Spiegel, M.: Effect of alloy composition on the selective oxidation of ternary Fe–Si–Cr, Fe–Mn–Cr model alloys. Surface and Interface Analysis 40 (3-4), pp. 268 - 272 (2008)
Mardare, C. C.; Spiegel, M.; Savan, A.; Ludwig, A.: Investigation of thin coatings from Mn–Co system deposited by PVD on metallic interconnects for SOFC Applications. Material Science Forum 595-598, pp. 797 - 804 (2008)
Swaminathan, S.; Koll, T.; Pohl, M.; Wieck, A. D.; Spiegel, M.: Hot-dip galvanizing simulation of model alloys and industrial steel grades: Correlation between surface chemistry and wettability. Steel Res. Int. 79 (1), pp. 66 - 72 (2008)
Asteman, H.; Spiegel, M.: Investigation of the HCl (g) attack on pre-oxidized pure Fe, Cr, Ni and commercial 304 steel at 400 °C. Corrosion Science 49 (9), pp. 3626 - 3637 (2007)
Li, Y. S.; Niu, Y.; Spiegel, M.: High temperature interaction of Al/Si-modified Fe–Cr alloys with KCl. Corrosion Science 49 (4), pp. 1799 - 1815 (2007)
Ruh, A.; Spiegel, M.: Thermodynamic and kinetic consideration on the corrosion of Fe, Ni and Cr beneath a molten KCl-ZnCl2 micture. Corr.Sci. 48, pp. 679 - 695 (2006)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion of pure iron. Mater. and Corr. 57, pp. 237 - 243 (2006)
Sánchez Pastén, M.; Spiegel, M.: High temperature corrosion of metallic materials in simulated waste incineration environments at 300-600 °C. Mater. and Corr. 57, pp. 192 - 195 (2006)
Li, Y. S.; Spiegel, M.; Shimada, S.: Corrosion behaviour of model alloys with NaCl–KCl coating. Materials Chemistry and Physics 93 (1), p. 217 - 217 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…