Surendralal, S.; Todorova, M.: Automated Calculations for Charged Point Defects in Magnesium Oxide and Iron Oxides. Master, Ruhr-Universität Bochum, GermanyRuhr-Universität Bochum, Bochum, Germany (2016)
Sözen, H. I.: Ab initio investigations on the energetics and kinetics of defects in Fe–Al alloys. Master, Ruhr-Universität Bochum, Bochum, Germany (2014)
Tillack, N.: Chemical Trends in the Yttrium-Oxide Precipitates in Oxide Dispersion Strengthened Steels: A First-Principles Investigation. Master, Ruhr-Universität Bochum, Bochum, Germany (2012)
Kim, O.: Ab-initio study of formation and interaction energies in steel and their relations to the solubility limit of carbon in austenite and ferrite. Master, RWTH-Aachen, Aachen, Germany (2007)
Alkauskas, A.; Deak, P.; Neugebauer, J.; Pasquarello, A.; van de Walle, C. G. (Eds.): Advanced Calculations for Defects in Solids - Electronic Structure Methods - Preface (Special issue). Physica Status Solidi B 248, (1) (2011), 17-18 pp.
Poul, M.; Huber, L.; Bitzek, E.; Neugebauer, J.: Systematic Structure Datasets for Machine Learning Potentials: Application to Moment Tensor Potentials of Magnesium and its Defects. arXiv (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.