Raabe, D.: Compositional Lattice Defect Manipulation for Microstructure Design. The Bauerman Lecture 2019, Department of Materials, Imperial College London, Royal School of Mines, London, UK (2019)
Sedighiani, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D.: Obtaining constitutive parameters for a physics-based crystal plasticity model from macro-scale behavior. International Conference on Plasticity, Damage, and Fracture , Panama City, Panama (2019)
Li, Z.; Su, J.; Lu, W.; Wang, Z.; Raabe, D.: Metastable high-entropy alloys: design, structure and properties. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Seol, J. B.; Ko, W.-S.; Bae, J. W.; Jo, Y. H.; Li, Z.; Choi, P.-P.; Raabe, D.; Kim, H. S.: Transition in boron boundary cohesion from effectiveness to harmfulness with respect to application temperatures: high-entropy alloys and Ni-based superalloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Lu, W.; Li, Z.; Liebscher, C.; Dehm, G.; Raabe, D.: TEM/STEM Investigations of the TRIP Effect in a Dual-Phase High-Entropy Alloy. MRS Fall Meeting, Boston, MA, USA (2018)
Su, J.; Li, Z.; Raabe, D.: Microstructural Design to Improve the Mechanical Properties of an Interstitial TRIP-TWIP High-Entropy Alloy. MRS Fall Meeting , Boston, MA, USA (2018)
Sun, B.; Ponge, D.; Fazeli, F.; Scott, C.; Yue, S.; Raabe, D.: Revealing fracture mechanisms of medium manganese steels with and without delta-ferrite. 6th International Conference on Advanced Steels (ICAS 2018), Jeju, South Korea (2018)
Diehl, M.; Kühbach, M.; Raabe, D.: Experimental–computational analysis of primary static recrystallizazion in DC04 steel. 9th International Conference on Multiscale Materials Modeling , Osaka, Japan (2018)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.; Raabe, D.: DAMASK - Düsseldorf Advanced Material Simulation Kit. Seminar of the Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.