Malyar, N.; Dehm, G.; Kirchlechner, C.: Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper. Scripta Materialia 138, pp. 88 - 91 (2017)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Materialia 129, pp. 91 - 97 (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Towards probing the barrier strength of grain boundaries for dislocation transmission. Electronic Materials and Applications 2017, Orlando, FL, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Do we understand dislocation transmission through grain boundaries? PICS meeting, Luminy, Marseille, France (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…