Duarte, M. J.; Fang, X.; Rao, J.; Krieger, W.; Brinckmann, S.; Dehm, G.: In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56 (14), pp. 8732 - 8744 (2021)
An, D.; Krieger, W.; Zaefferer, S.: Unravelling the effect of hydrogenon microstructure evolution under low-cycle fatigue in a high-manganese austenitic TWIP steel. International Journal of Plasticity 126, 102625 (2020)
Sun, B.; Krieger, W.; Rohwerder, M.; Ponge, D.; Raabe, D.: Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels. Acta Materialia 183, pp. 313 - 328 (2020)
Wu, C.-H.; Krieger, W.; Rohwerder, M.: On the robustness of the Kelvin probe based potentiometric hydrogen electrode method and its application in characterizing effective hydrogen activity in metal: 5 wt. % Ni cold-rolled ferritic steel as an example. Science and Technology of Advanced Materials 20 (1), pp. 1073 - 1089 (2019)
Krieger, W.; Merzlikin, S. V.; Bashir, A.; Springer, H.; Rohwerder, M.: Influence of strengthening mechanisms and environmental conditions on the performance of ferritic steels. In: EUROCORR 2017 - The Annual Congress of the European Federation of Corrosion. Joint European Corrosion Congress 2017, EUROCORR 2017 and 20th International Corrosion Congress and Process Safety Congress 2017, Prague, Czech Republic, September 03, 2017 - September 07, 2017. (2017)
Altin, A.; Wohletz, S.; Krieger, W.; Groche, P.; Erbe, A.: Effect of surface condition on the bond strength between aluminum and steel joint in cold welding. CETAS 2015, Düsseldorf, Germany (2015)
Altin, A.; Wohletz, S.; Krieger, W.; Kostka, A.; Groche, P.; Erbe, A.: Nanoscale understanding of bond formation during cold welding of aluminum and steel. 6th International Conference on Tribology in Manufacturing Processes & Joining by Plastic Deformation, Darmstadt, Germany (2014)
Krieger, W.: Charakterisierung von Wasserstofffallen und deren Einfluss auf die Wasserstoffversprödung in ferritischen Stählen. Dissertation, Ruhr University Bochum, Bochum, Germany (2018)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.