Posner, R.; Fink, N.; Giza, G.; Grundmeier, G.: Corrosive delamination and ion transport along stretch-formed thin conversion films on galvanized steel. Surface and Coatings Technology 253, pp. 227 - 233 (2014)
Posner, R.; Fink, N.; Wolpers, M.; Grundmeier, G.: Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel. Surface and Coatings Technology 228, pp. 286 - 295 (2013)
Özcan, Ö.; Pohl, K.; Keil, P.; Grundmeier, G.: Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications 13 (8), pp. 837 - 839 (2011)
Giza, M.; Grundmeier, G.: Combination of FTIR Reflection Absorption Spectroscopy and Work Function Measurements for In Situ Studies of Plasma Modified Passive Films on MgZn2. Plasma Processes and Polymers 8 (7), pp. 607 - 616 (2011)
Itani, H.; Santa, M.; Keil, P.; Grundmeier, G.: Backside SERS Studies of Inhibitor Transport Through Polyelectrolyte Films on Ag-substrates. Journal of Colloid and Interface Science 357 (2), pp. 480 - 486 (2011)
Posner, R.; Sundell, P. E.; Bergman, T.; Roose, P.; Heylen, M.; Grundmeier, G.; Keil, P.: UV-Curable Polyester Acrylate Coatings: Barrier Properties and Ion Transport Kinetics Along Polymer/Metal Interfaces. Journal of the Electrochemical Society 158 (6), pp. C185 - C193 (2011)
Posner, R.; Santa, M.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel I. Interface Potentials and Characteristics of Ion Transport Processes. Journal of the Electrochemical Society 158 (3), pp. C29 - C35 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel II. The Influence of -Glycidoxypropyltrimethoxysilane as an Adhesion Promoting Additive. Journal of the Electrochemical Society 158 (3), pp. C36 - C41 (2011)
Grundmeier, G.; Posner, R.: Disbonding processes at polymer-metal interfaces: From a molecular-level understanding to self-healing processes. Galvanotechnik 101 (6), pp. 1253 - 1255 (2010)
Posner, R.; Giza, G.; Marazita, M.; Grundmeier, G.: Ion transport processes at polymer/oxide/metal interfaces under varying corrosive conditions. Corrosion Science 52 (5), pp. 1838 - 1846 (2010)
Posner, R.; Marazita, M.; Amthor, S.; Roschmann, K. J.; Grundmeier, G.: Influence of interface chemistry and network density on interfacial ion transport kinetics for styrene/acrylate copolymer coated zinc and iron substrates. Corrosion Science 52 (3), pp. 754 - 760 (2010)
Titz, T.; Hoerzenberger, F.; Van den Bergh, K.; Grundmeier, G.: Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvansied steel. Part 2: Influence of forming induced defects. Corrosion Science 52 (2), pp. 378 - 386 (2010)
Thissen, P.; Valtiner, M.; Grundmeier, G.: Stability of Phosphonic Acid Self-Assembled Monolayers on Amorphous and Single-Crystalline Aluminum Oxide Surfaces in Aqueous Solution. Langmuir 26 (1), pp. 156 - 164 (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.