Moeremans, B.; Cheng, H.-W.; Merola, C.; Hu, Q.; Oezaslan, M.; Safari, M.; Van Bael, M. K.; Hardy, A.; Valtiner, M.; Renner, F. U.: In Situ Mechanical Analysis of the Nanoscopic Solid Electrolyte Interphase on Anodes of Li-Ion Batteries. Advanced Science 6 (16), 1900190 (2019)
Ostertag, L. M.; Ling, X.; Domke, K. F.; Parekh, S. H.; Valtiner, M.: Characterizing the hydrophobic-to-hydrophilic transition of electrolyte structuring in proton exchange membrane mimicking surfaces. Physical Chemistry Chemical Physics 20 (17), pp. 11722 - 11729 (2018)
Ostertag, L. M.; Utzig, T.; Klinger, C.; Valtiner, M.: Tether-Length Dependence of Bias in Equilibrium Free-Energy Estimates for Surface-to-Molecule Unbinding Experiments. Langmuir 34 (3), pp. 766 - 772 (2018)
Stock, P.; Utzig, T.; Valtiner, M.: Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides. Physical Chemistry Chemical Physics 19 (6), pp. 4216 - 4221 (2017)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie International Edition in English 55, pp. 9524 - 9528 (2016)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie 128, pp. 9676 - 9680 (2016)
Utzig, T.; Stock, P.; Raman, S.; Valtiner, M.: Targeted Tuning of Interactive Forces by Engineering of Molecular Bonds in Series and Parallel Using Peptide-Based Adhesives. Langmuir 31 (40), pp. 11051 - 11057 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…