Zhang, J.; Zaefferer, S.: Influence of sample preparation on nanoindentation results of twinning-induced plasticity steel. International Journal of Minerals, Metallurgy and Materials 28, pp. 877 - 887 (2021)
Springer, H.; Zhang, J.; Szczepaniak, A.; Belde, M. M.; Gault, B.; Raabe, D.: Light, strong and cost effective: Martensitic steels based on the Fe - Al - C system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 762, 138088 (2019)
Zhang, J.; Tasan, C. C.; Lai, M.; Yan, D.; Raabe, D.: Partial recrystallization of gum metal to achieve enhanced strength and ductility. Acta Materialia 135, pp. 400 - 410 (2017)
Zhang, J.; Morsdorf, L.; Tasan, C. C.: Multi-probe microstructure tracking during heat treatment without an in-situ setup: Case studies on martensitic steel, dual phase steel and β-Ti alloy. Materials Characterization 111, pp. 137 - 146 (2016)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage resistance in gum metal through cold work-induced microstructural heterogeneity. Journal of Materials Science 50 (17), pp. 5694 - 5708 (2015)
Zhang, J.; Zaefferer, S.; Raabe, D.: A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 636, pp. 231 - 242 (2015)
Zhang, J.; Tasan, C. C.; Lai, M.; Zhang, J.; Raabe, D.: Damage Resistance through Hierarchical Microstructure Development on GUM Metal. Materials Science and Engineering (MSE2014), Darmstadt, Germany (2014)
Zhang, J.; Tasan, C. C.; Lai, M.; Springer, H.; Raabe, D.: Microstructural and Mechanical Characterization of Cold Work Effects in GUM Metal. 9th International Conference on Advances in Experimental Mechanics, Cardiff, UK (2013)
Zhang, J.; Raabe, D.; Lai, M.; Yan, D.; Tasan, C. C.: Site-preferential recrystallization and nano-precipitation to achieve improved mechanical properties. MRS Fall Meeting 2016, Boston, MA, USA (2016)
Lai, M.; Tasan, C. C.; Zhang, J.; Grabowski, B.; Huang, L.; Springer, H.; Raabe, D.: ω phase accommodated nano-twinning mechanism in Gum Metal: An ab initio study. 3rd International Workshop on Physics Based Material Models and Experimental Observations: Plasticity and Creep, Cesme/Izmir, Turkey (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…