Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Predicting atomic structure and chemical reactions at solid-liquid interfaces by first principles. Operando surface science – Atomistic insights into electrified solid/liquid interfaces (708. WE-Heraeus-Seminar), Physikzentrum, Bad Honnef, Germany (2019)
Neugebauer, J.: Machine Learning in Materials: Screening and Discovery. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan (2019)
Ikeda, Y.; Ishibashi, S.; Neugebauer, J.; Körmann, F.: Tuning stacking-fault energies and local lattice distortions in high-entropy alloys. Theory of Complex Disorder in Materials (TCDM2019) , Linköping, Sweden (2019)
Neugebauer, J.; Surendralal, S.; Todorova, M.: First-principles appraoch to model electrochemical reactions at solid-liquid interfaces. ACS 2019 Fall Meeting & Exhibition, San Diego, CA, USA (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: Degradation processes at surfaces and interfaces. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (2019)
Neugebauer, J.; Huber, L.; Körmann, F.; Grabowski, B.; Hickel, T.: Ab initio input for multiphysics models: Accuracy, performance and challenges. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Erlangen, Germany (2019)
Neugebauer, J.: Machine Learning in Materials: Screening and Discovery. Gordon Research Conference Physical Metallurgy „Coupling Computation, Data Science and Experiments in Physical Metallurgy“, Manchester, NH, USA (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Recently developed dual-phase high entropy alloys (HEAs) exhibit both an increase in strength and ductility upon grain refinement, overcoming the strength-ductility trade-off in conventional alloys [1]. Metastability engineering through compositional tuning in non-equimolar Fe-Mn-Co-Cr HEAs enabled the design of a dual-phase alloy composed of…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
To design novel alloys with tailored properties and microstructure, two materials science approaches have proven immensely successful: Firstly, thermodynamic and kinetic descriptions for tailoring and processing alloys to achieve a desired microstructure. Secondly, crystal defect manipulation to control strength, formability and corrosion…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.