Silva, C. C.; Silva, R. S.; Miná, É. M.; Motta, M. F.; Miranda, H. C.; Dalpiaz, G.; Marinho, R. R.; Paes, M. T. P.; Kwiatkowski da Silva, A.; Wossack, I.et al.; Liebscher, C.: Heterogeneously structured Ni-based alloy obtained by wire-arc additive manufacturing overcomes the strength-ductility trade-off. Journal of Materials Science & Technology 254, pp. 168 - 179 (2026)
Das, S. M.; Harrison, P.; Kiranbabu, S.; Zhou, X.; Ludwig, W.; Rauch, E. F.; Herbig, M.; Liebscher, C.: Correlating Grain Boundary Character and Composition in 3-Dimensions Using 4D-Scanning Precession Electron Diffraction and Atom Probe Tomography. Small Methods 9 (5), 2401650 (2025)
Cheng, N.; Sun, H.; Pivak, Y.; Liebscher, C.: Direct Visualization and Quantitative Insights into the Formation and Phase Evolution of Cu Nanoparticles via In Situ Liquid Phase 4D-STEM. ADVANCED SCIENCE 12 (19), 2500706 (2025)
Sevlikar, S. V.; Muralikrishna, G. M.; Gaertner, D.; Starikov, S.; Brink, T.; Scheiber, D.; Smirnova, D.; Irmer, D.; Tas, B.; Esin, V. A.et al.; Razumovskiy, V. I.; Liebscher, C.; Wilde, G.; Divinski, S. V.: Grain boundary diffusion and segregation of Cr in Ni Σ11(1̄13)[110] bicrystals: Decoding the role of grain boundary defects. Acta Materialia 278, 120229 (2024)
Guo, S.; Ji, Y.; Liao, G.; Wang, J.; Shen, Z.-H.; Qi, X.; Liebscher, C.; Cheng, N.; Ren, L.; Ge, B.: Tailoring Heterostructure Growth on Liquid Metal Nanodroplets through Interface Engineering. Journal of the American Chemical Society 146 (29), pp. 19800 - 19808 (2024)
Ahmad, S.; Brink, T.; Liebscher, C.; Dehm, G.: Influence of variation in grain boundary parameters on the evolution of atomic structure and properties of [111] tilt boundaries in aluminum. Acta Materialia 268, 119732 (2024)
Kamachali, R. D.; Wallis, T.; Ikeda, Y.; Saikia, U.; Ahmadian, A.; Liebscher, C.; Hickel, T.; Maass, R.: Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system. Scripta Materialia 238, 115758 (2024)
Torres, P. A. L.; Li, Y.-S.; Grön, C.; Lazaridis, T.; Watermeyer, P.; Cheng, N.; Liebscher, C.; Gasteiger, H. A.: ORR Activity and Voltage-Cycling Stability of a Carbon-Supported PtxY Alloy Catalyst Evaluated in a PEM Fuel Cell. Journal of the Electrochemical Society 170 (12), 124503 (2023)
Leitherer, A.; Yeo, B. C.; Liebscher, C.; Ghiringhelli, L. M.: Automatic identification of crystal structures and interfaces via artificial-intelligence-based electron microscopy. npj Computational Materials 9 (1), 179 (2023)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.