Dehm, G.; Müllner, P.: TEM-Observation of Dislocations in Polycrystalline Metal Films. In: The Encyclopedia of Materials: Science and Technology, Vol. 1, pp. 2329 - 2331 (Eds. Buschow, .H.J.; Cahn, R.; Flemings, M.; Ilschner, .; Kramer, E. et al.) (2001)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Bieler, S.; Kang, S. G.; Heußen, D.; Ramachandramoorthy, R.; Dehm, G.; Weinberg, K.: Investigation of copper lattice structures using a Split Hopkinson Pressure Bar. Proceedings of Applied Mathematics and Mechanics, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 21 (1), e202100155, (2021)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. In: Intermetallics 2021, pp. 155 - 156. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. (2021)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Micromechanics of Co–Nb Laves Phases: Strength, Fracture Toughness, and Hadrness as Function of Composition and Crystal Structure. In: Joint EPRI – 123HIMAT International Conference on Advances in High-Temperature Materials, 2019, pp. 11 - 21 (Eds. Shingledecker, J.; Takeyama, M.). EPRI's 9th International Conf on Advances in Materials Technology for Fossil Power Plants and the 2nd International 123HiMAT Conf on High-Temperature Materials, Nagasaki, Japan, October 21, 2019 - October 24, 2019. (2019)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Deformation of Micropillars of Cubic and Hexagonal NbCo2 Laves Phases under Uniaxial Compression at Room Temperature. In: Proc. Intermetallics 2017, pp. 199 - 200 (Eds. Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F.). Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2017)
Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: In situ electron microscopy – insights in solid state dewetting of epitaxial Al thin films on sapphire. In: Microscopy Conference 2017 (MC 2017) - Proceedings (Ed. Laue, M.). Microscopy Conference 2017 (MC 2017), Lausanne, Switzerland, August 21, 2017 - August 25, 2017. Universität Regensburg, Regensburg (2017)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. In: European Microscopy Congress 2016: Proceedings, pp. 203 - 204. The 16th European Microscopy Congress (EMC 2016), Lyon, France, August 28, 2016 - September 02, 2016. Wiley-VCH Verlag GmbH & Co KGaA (2016)
Heinz, W.; Dehm, G.: Grain resolved orientation changes and texture evolution in a thermally strained Al film on Si substrate. The 38th International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2011), San Diego, CA, USA, May 02, 2011 - May 06, 2011. Surface and Coatings Technology, Part of special issue: Proceedings of the 38th International Conference on Metallurgical Coatings and Thin Films (ICMCTF), ICMCTF 2011 206 (7), pp. 1511 - 2034 (2011)
Motz, C.; Kiener, D.; Kirchlechner, C.; Grosinger, W.; Pippan, R.; Dehm, G.: Advances in in-situ testing in scanning electron microscopes: probing mechanical properties at the nano/micro-scale. In: 10th Multinational Congress on Microscopy (MCM 2011), pp. 57 - 58. 10th Multinational Congress on Microscopy (MCM 2011). (2011)
Cha, L.; Clemens, H. J.; Dehm, G.; Zhang, Z.: In-situ TEM heating study of the γ lamellae formation inside the α2 matrix of a Ti-45Al-7.5Nb alloy. 2010 International Conference on Advances in Materials and Manufacturing Processes, ICAMMP 2010;Code 83174, Shenzhen, China, November 06, 2010 - November 08, 2020. Advanced Materials Research 146-147, pp. 1365 - 1368 (2011)
Clemens, H. J.; Schmoelzer, T.; Schloffer, M.; Schwaighofer, E.; Mayer, S.; Dehm, G.: Physical metallurgy and properties of β-solidifying TiAl based alloys. In: Materials Research Society symposium proceedings, Vol. 1295, pp. 95 - 100. Materials Research Society Symposium N – Intermetallic-Based Alloys for Structural and Functional Applications , San Francisco, CA, USA, April 25, 2011 - April 29, 2011. Materials Research Society: MRS, Leoben, Austria (2011)
Dehm, G.; Kiener, D.: Obtaining a quantitative micro- and nano-mechanical understanding of metals using in situ electron microscopy. In: MCM 2011, pp. 599 - 600. 10th Multinational Congress on Microscopy (MCM 2011), Urbino, Italy, September 04, 2011 - September 09, 2011. Urbino, Italy (2011)
Dehm, G.; Raj, R.; Rühle, M.: Measurement of the Interfacial Shear Strength of Thin Copper Films on Sapphire by Microindentation Experiments. In: Materials Research Symposium Proceedings 1996 (Symposium I – Polycrystalline Thin Films: Structure, Texture, Properties and Applications II), Vol. 403, pp. 151 - 156. 1996 MRS Fall Meeting & Exhibit, Boston, MA, USA, December 02, 1996 - December 06, 1996. Materials Research Society, Boston, MA, USA (2011)
Huang, R.; Robl, W.; Dehm, G.; Ceric, H.; Detzel, T.: Disparate tendency of stress evolution of thin and thick electroplated Cu films at room temperature. In: Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, 5532222, pp. 1 - 6. International Symposium on the Physical and Failure Analysis of Integrated Circuits IPFA 2010, Singapore, Singapore, July 05, 2010 - July 09, 2010. IEEE (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…