Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Chen, P.; Chew, L. M.; Kostka, A.; Muhler, M.; Xia, W.: The structural and electronic promoting effect of nitrogen-doped carbon nanotubes on supported Pd nanoparticles for selective olefin hydrogenation. Catalysis Science & Technology 3 (8), pp. 1964 - 1971 (2013)
Erbe, A.; Valtiner, M.; Muhler, M.; Mayrhofer, K. J. J.; Rohwerder, M.: Physical chemistry of surfaces and interfaces. Lecture: Course for PhD students of the IMPRS Surmat, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - October 31, 2013
Iqbal, D.: Ultrathin Chemisorbed Polymer Coatings: Corrosion Protection and Nanostructuring of ZnO. Dissertation, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany (2014)
Meier, J. C.: Degradation phenomena and design principles for stable and active Pt/C fuel cell catalysts. Dissertation, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
To design novel alloys with tailored properties and microstructure, two materials science approaches have proven immensely successful: Firstly, thermodynamic and kinetic descriptions for tailoring and processing alloys to achieve a desired microstructure. Secondly, crystal defect manipulation to control strength, formability and corrosion…