Tarzimoghadam, Z.; Ponge, D.; Klöwer, J.; Raabe, D.: Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation. Acta Materialia 128, pp. 365 - 374 (2017)
Tytko, D.; Choi, P.-P.; Klöwer, J.; Inden, G.; Raabe, D.: Microstructural evolution of a Ni-based superalloy (617B) at 700 °C studied by electron microscopy and atom probe tomography. Acta Materialia 60 (4), pp. 1731 - 1740 (2012)
Klöwer, J.; Klapper, H. S.; Gosheva, O.; Tarzimoghadam, Z.: Effect of microstructural particularities on the corrosion resistance of Nickel alloy UNS N07718 - What really makes the difference? In: NACE - International Corrosion Conference Series, Vol. 2, pp. 1079 - 1093. NACE Corrosion 2017, Code 128795, New Orleans, LA, USA, March 26, 2017 - March 30, 2017. (2017)
Ponge, D.; Tarzimoghadam, Z.; Klöwer, J.; Raabe, D.: Hydrogen-assisted Failure in Ni-base Superalloy 718 Studied under In-situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation. DPG-Frühjahrstagung der Sektion Kondensierte Materie, Berlin, Germany (2018)
Ponge, D.; Tarzimoghadam, Z.; Klöwer, J.; Raabe, D.: Hydrogen-assisted Failure in Ni-base Superalloy 718 Studied under In-situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation. TMS 2017 Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…