He, J.; Scholz, F.; Horst, O. M.; Thome, P.; Frenzel, J.; Eggeler, G. F.; Gault, B.: Corrigendum to ‘On the Re segregation at the low angle grain boundary in a single crystal Ni-base superalloy’ Scripta Materialia Volume 185, August 2020, Pages 88-93 (Scripta Materialia (2020) 185 (88–93), (S1359646220302475), (10.1016/j.scriptamat.2020.03.063)). Scripta Materialia 187, p. 309 (2020)
Edmondson, P. D.; Gault, B.; Gilbert, M. R.: An atom probe tomography and inventory calculation examination of second phase precipitates in neutron irradiated single crystal tungsten. Nuclear Fusion 60 (12), 126013 (2020)
Antonov, S.; Li, B.; Gault, B.; Tan, Q.: The effect of solute segregation to deformation twin boundaries on the electrical resistivity of a single-phase superalloy. Scripta Materialia 186, pp. 208 - 212 (2020)
Blum, T.; Valley, J.; Gault, B.; Stephenson, L.: Application of SIMS and APT to Understand Scale Dependent U-Pb Isotope Behavior in Zircon. Microscopy and Microanalysis 26 (S2), pp. 2994 - 2995 (2020)
Harding, I.; Mouton, I.; Gault, B.; Kumar, K. S.: Microstructural Evolution in an Fe–10Ni–0.1C Steel During Heat Treatment and High Strain-Rate Deformation. Metallurgical and Materials Transactions A 51, pp. 5056 - 5076 (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.