GUO, Y.-l.; Zhang, S.; He, J.; Lu, W.; Jia, L.-n.; Li, Z.; Zhang, H.: Transition from micro-rod to nano-lamella eutectics and its hardening effect in niobium/silicide in-situ composites. Transactions of Nonferrous Metals Society of China (English Edition) 33 (8), pp. 2406 - 2416 (2023)
Guo, Y.; Jia, L.; He, J.; Zhang, S.; Li, Z.; Zhang, H.: Interplay between eutectic and dendritic growths dominated by Si content for Nb–Si–Ti alloys via rapid solidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME 144 (6), 061007 (2022)
Chen, X.; Zhuang, X.; Mo, J. W.; He, J.; Yang, T.; Zhou, X.; Liu, W.: Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron. Materials Research Letters 10 (4), pp. 278 - 286 (2022)
Song, L.; Appel, F.; Stark, A.; Lorenz, U.; He, J.; He, Z.; Lin, J.; Zhang, T.; Pyczak, F.: On the reversibility of the α2/ω0 phase transformation in a high Nb containing TiAl alloy during high temperature deformation. Journal of Materials Science & Technology 93, pp. 96 - 102 (2021)
He, J.; Wu, X.; Guo, Y.; Makineni, S. K.: On the compositional and structural redistribution during partial recrystallisation: a case of σ-phase precipitation in a Mo-doped NiCoCr medium-entropy alloy. Scripta Materialia 194, 113662 (2021)
Guo, Y.; He, J.; Lu, W.; Jia, L.; Li, Z.: The evolution of compositional and microstructural heterogeneities in a TaMo0.5ZrTi1.5Al0.1Si0.2 high entropy alloy. Materials Characterization 172, 110836 (2021)
He, J.; Cao, L.; Makineni, S. K.; Gault, B.; Eggeler, G. F.: Effect of interface dislocations on mass flow during high temperature and low stress creep of single crystal Ni-base superalloys. Scripta Materialia 191, pp. 23 - 28 (2021)
He, J.; Scholz, F.; Horst, O. M.; Thome, P.; Frenzel, J.; Eggeler, G. F.; Gault, B.: Corrigendum to ‘On the Re segregation at the low angle grain boundary in a single crystal Ni-base superalloy’ Scripta Materialia Volume 185, August 2020, Pages 88-93 (Scripta Materialia (2020) 185 (88–93), (S1359646220302475), (10.1016/j.scriptamat.2020.03.063)). Scripta Materialia 187, p. 309 (2020)
Liu, Y.; Tang, H.; Huang, Q.; Zhao, D.; He, J.; Cao, Y.; Song, M.; Liu, B.; Ouyang, S.: Strong-yet-ductile Ti−Zr alloys through high concentration of oxygen strengthening. Transactions of Nonferrous Metals Society of China (English Edition) 30 (9), pp. 2449 - 2458 (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…