Tian, C.; Dehm, G.; Kirchlechner, C.: Influence of strain rate on the activation of {110}, {112}, {123} slip in ferrite of DP800. Materialia 15, 100983 (2021)
Tian, C.; Kirchlechner, C.: The fracture toughness of martensite islands in dual-phase DP800 steel. Journal of Materials Research 36, pp. 2495 - 2504 (2021)
Tian, C.; Ponge, D.; Christiansen, L.; Kirchlechner, C.: On the mechanical heterogeneity in dual phase steel grades: Activation of slip systems and deformation of martensite in DP800. Acta Materialia 183, pp. 274 - 284 (2020)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. In: Intermetallics 2021, pp. 155 - 156. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. (2021)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. Intermetallics 2021, Educational Center Kloster Banz, Bad Staffelstein, Germany (2021)
Tian, C.: On the damage initiation in dual phase steels: Quantitative insights from in situ micromechanics. Dissertation, Ruhr-Universität Bochum (2021)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…