Cordill, M. J.; Taylor, A. A.; Berger, J.; Schmidegg, K.; Dehm, G.: Robust mechanical performance of chromium-coated polyethylene terephthalate over a broad range of conditions. Philosophical Magazine 92 (25-27), pp. 3346 - 3362 (2012)
Taylor, A. A.; Cordill, M. J.; Dehm, G.: On the limits of the interfacial yield model for fragmentation testing of brittle films on polymer substrates. Philosophical Magazine 92 (25-27), pp. 3363 - 3380 (2012)
Taylor, A. A.; Edlmayr, V.; Cordill, M. J.; Dehm, G.: The effect of temperature and strain rate on the periodic cracking of amorphous AlxOy films on Cu. Surface and Coatings Technology 206 (7), pp. 1855 - 1859 (2011)
Taylor, A. A.; Edlmayr, V.; Cordill, M. J.; Dehm, G.: The effect of film thickness variations in periodic cracking: Analysis and experiments. Surface and Coatings Technology 206 (7), pp. 1830 - 1836 (2011)
Taylor, A. A.; Cordill, M. J.; Moser, G.; Dehm, G.: A Mechanical Method for Preparing TEM Samples from Brittle Films on Compliant Substrates. Practical Metallography - Praktische Metallographie 48 (8), pp. 408 - 413 (2011)
Cordill, M. J.; Taylor, A. A.; Schalko, J.; Dehm, G.: Microstructure and adhesion of as-deposited and annealed Cu/Ti films on polyimide. International Journal of Materials Research 102 (6), pp. 729 - 734 (2011)
Cordill, M. J.; Taylor, A. A.; Schalko, J.; Dehm, G.; Dehm, G.: Fracture and Delamination of Chromium Thin Films on Polymer Substrates. Symposium on Mechanical Behavior of Nanostructured Materials held at the 2009 TMS Annual Meeting and Exhibition, San Francisco, CA, USA, February 15, 2009 - February 19, 2009. Metallurgical and Materials Transactions A 41 (4), pp. 870 - 875 (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.