Zhu, L.-F.; Körmann, F.; Chen, Q.; Selleby, M.; Neugebauer, J.; Grabowski, B.: Accelerating ab initio melting property calculations with machine learning: application to the high entropy alloy TaVCrW. npj Computational Materials 10 (1), 274 (2024)
Zhou, Y.; Srinivasan, P.; Körmann, F.; Grabowski, B.; Smith, R.; Goddard, P.; Duff, A. I.: Thermodynamics up to the melting point in a TaVCrW high entropy alloy: Systematic ab initio study aided by machine learning potentials. Physical Review B 105 (21), 214302 (2022)
Dsouza, R.; Huber, L.; Grabowski, B.; Neugebauer, J.: Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping. Physical Review B 105 (18), 184111 (2022)
Novikov, I.; Grabowski, B.; Körmann, F.; Shapeev, A.: Magnetic Moment Tensor Potentials for collinear spin-polarized materials reproduce different magnetic states of bcc Fe. npj Computational Materials 8 (1), 13 (2022)
Zhu, L.-F.; Körmann, F.; Ruban, A. V.; Neugebauer, J.; Grabowski, B.: Performance of the standard exchange-correlation functionals in predicting melting properties fully from first principles: Application to Al and magnetic Ni. Physical Review B 101 (14), 144108 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Funding ended January 2023 This group was concerned with the 3D mapping of hydrogen at near-atomic scale in metallic alloys with the aim to better understand hydrogen storage materials and hydrogen embrittlement.