Gambino, D.; Alling, B.: Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles. Physical Review B 98 (6), 064105 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles. Physical Review B 97 (17), 174104 (2018)
Gharavi, M.; Armiento, R.; Alling, B.; Eklund, P.: Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds. Journal of Materials Science: Materials in Electronics 53 (6), pp. 4294 - 4305 (2018)
Mozafari, E.; Alling, B.; Belov, M. P.; Abrikosov, I. A.: Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture. Physical Review B 97 (3), 035152 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system. Physical Review B 96 (2), 024202 (2017)
Ektarawong, A.; Simak, S. I.; Alling, B.: Thermodynamic stability and properties of boron subnitrides from first principles. Physical Review B 95 (6), 064206 (2017)
Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, I. A.: Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations. Physical Review B 94 (5), 054111 (2016)
Ektarawong, A.; Simak, S. I.; Alling, B.: Carbon-rich icosahedral boron carbides beyond B4 C and their thermodynamic stabilities at high temperature and pressure from first principles. Physical Review B 94 (5), 054104 (2016)
Olovsson, W.; Alling, B.; Magnuson, M.: Structure and Bonding in Amorphous Cr1-xCx Nanocomposite Thin Films: X-ray Absorption Spectra and First-Principles Calculations. The Journal of Physical Chemistry C 120 (23), pp. 12890 - 12899 (2016)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…