Gault, B.: Full determination of 3D atomic position by combining APT & EM. Scientific Directions for Future TEM, Forschungszentrum Jülich, Jülich, Germany (2016)
Gault, B.; Katnagallu, S.: Atom probe microscopy: a new playground for big data analysis? Workshop Big-Data-Driven Materials Science, Ringberg Castle, Rottach, Germany (2016)
Gault, B.; De Geuser, F.: A perspective on the ion projection in field ion & atom probe microscopy. Atom Probe Tomography & Microscopy 2016, Gyeongju, South Korea (2016)
Raabe, D.; Choi, P.-P.; Gault, B.; Ponge, D.; Yao, M.; Herbig, M.: Segregation engineering for self-organized nanostructuring of materials - from atoms to properties? APT&M 2016 - Atom Probe Tomography & Microscopy 2016 (55th IFES) , Gyeongju, South Korea (2016)
Kuzmina, M.; Gault, B.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.: From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms. Res Metallica Symposium, Department of Materials Engineering, KU Leuven, Leuven, The Netherlands (2016)
Herbig, M.; Ponge, D.; Gault, B.; Borchers, C.; Raabe, D.: Segregation and phase transformation at dislocations during aging in a Fe-9%Mn steel studied by correlative TEM-atom probe tomography. MSE 2014, Darmstadt, Germany (2014)
Schwarz, T.; Yang, J.; Aota, L. S.; Woods, E.; Zhou, X.; Neugebauer, J.; Todorova, M.; McCaroll, I.; Gault, B.: Analysis of the reactive solid-liquid interface during the corrosion of magnesium at the near atomic level using cryo-atom probe tomography. Aqueous Corrosion Gordon Research Conference (GRC) 2024, Corrosion Challenges and Opportunities for the Energy Transition, New London, CT, USA (2024)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.